Значения редуцирующих сахаров в сахаре песке примеры. Редуцирующие дисахариды. Определение титра реактива Фелинга

Значения редуцирующих сахаров в сахаре песке примеры. Редуцирующие дисахариды. Определение титра реактива Фелинга

Для некоторых видов сырья требуется определить массовую долю редуцирующих сахаров. Этот показатель определяется во многом пищевом сырье, которое используется в производстве различных биологических активных добавок , выпускаемых нашим предприятием ООО «КоролёвФарм» . Редуцирующие (восстанавливающие) – это такие сахара, которые вступают в реакцию восстановления, т.е способные легко окисляться. Этот показатель также нужен для определения общего сахара в продукте.

Рис. 1 Проведение испытаний

Он также является важным для такого пищевого сырья как мед. Низкое содержание таких сахаров и высокое сахарозы свидетельствует о том, что пчел долгое время подкармливали сахарным сиропом. Таким образом, выявляют фальсифицированный мед, который называют сахарным медом.

В пищевых продуктах в основном содержатся дисахариды, в виде сахарозы, мальтозы, лактозы. Моносахара представлены глюкозой, галактозой и фруктозой, трисахариды встречаются в основном в виде раффинозы. Для пищевых продуктов по ГОСТам или ТУ нормируется в основном суммарное содержаʜие сахаров или так называемый общий сахар, выражаемый в процентах сахарозы. Все перечисленные выше сахара, кроме сахарозы, обладают редуцирующей способностью.

В Аналитической лаборатории ООО «КоролевФарм» на участке физико- химических испытаний этот показатель качества сырья определяется фотоколориметрическим способом. В основу положена реакция взаимодействия карбонильных групп сахаров с железосинеродистым калием, а затем определение оптической плотности растворов до и после инверсии на спектрофотометре.

Для проведения испытания готовим следующие растворы:

  1. железосинеродистого калия;
  2. метилового оранжевого;
  3. сахара стандартный раствор после инверсии.

Для приготовления (1) раствора берем навеску железосинеродистого калия равную 10 г, помещаем ее в колбу на 1000 мл, растворяем и доводим водой до метки.

Для получения (2) раствора берем 0,02 г реактива метилового оранжевого, растворяем его в 10 мл кипятка, охлаждаем и фильтруем.

Приготовление (3) раствора проводим так: берем 0,38 г сахарозы, высушенной в течение 3 суток в эксикаторе (или сахара - рафинада), взвешиваем с точностью до 0,001г, переносим навеску в колбу на 200 мл, добавляем воды 100 мл и 5 мл хлористоводородной кислоты. В колбу помещаем термометр и ставим в ультротермостат. Прогреваем содержимое колбы до 67-70°С, выдерживаем при этой Т0 С ровно 5 мин. Охладив содержимое до 20°С, добавляем одну каплю индикатора (2), нейтрализуем 25% раствором щелочи, смесь доводим водой до 200 мл и все тщательно перемешиваем. В полученном растворе содержание инвертного сахара 2 мг в 1 мл.

Для определения оптической плотности готовим ряд разведений стандартного раствора. Для этого берем 7 колб на 250 мл, в каждую из них помещаем по 20 мл феррицианида калия, 5 мл щелочного раствора с концентрацией 2,5 моль /мл. Затем вносим стандартный раствор в количествах: 5,5 мл; 6,0 мл; 6,5 мл; 7,0 мл; 7,5 мл; 8,0 мл и 8,5 мл. Это соответствует 11 мг, 12 мг, 13 мг, 14 мг, 15 мг, 16 мг и 17 мг инвертного сахара. Затем поочередно добавляем из бюретки воду соответственно 4,5 мл; 4,0 мл; 3,5 мл; 3,0 мл; 2,5 мл; 2,0 мл и 1,5 мл. В результате в каждой колбе объем становится равен 35 мл. Содержимое нагреваем и кипятим 60 сек, после чего охлаждаем и заполняем жидкостью кюветы. Измеряем показание оптической плотности каждого полученного раствора со светофильтром при длине волны светопропускания 440 нм. Для раствора сравнения используем дистиллированную воду. Измерения регистрируем три раз и вычисляем среднеарифметическое значение для каждого образца.

Рис. 3. Проведение измерений на спектрофотометре

На миллиметровой бумаге строим график. На оси ординат откладываем полученные показания оптической плотности стандартных растворов с определенным содержанием инвертного сахара, а по оси абсцисс эти значения концентраций сахара в миллиграммах. Получаем график, который нам будет нужен в дальнейшем.

Чтобы определить массовую долю сахаров до инверсии готовим навеску в количестве 2,00 г, помещаем ее в колбу на 100 мл и растворяем. Переносим 10 мл этого раствора в другую такую же колбу и доводим до метки (это рабочий раствор исследуемого вещества).

В колбу на 250 мл вносим 20 мл феррицианида калия, 5 мл щелочи (С= 2,5 моль/мл) и 10 мл приготовленного раствора. Нагреваем смесь и кипятим ровно 1 мин, затем быстро охлаждаем и определяем оптическую плотность на спектрофотометре. Измерение производим 3 раза. Вычисляем среднее арифметическое результатов.

Зная оптическую плотность, по графику находим массу редуцирующих сахаров в миллиграммах и вычисляем ее в процентах по формуле:

Х1= m1VV2/mV1V3 10

где m1 - масса редуцирующего сахара, найденная с помощью графика, мг.

V- объем раствора, приготовленного из испытуемой навески, см3;

V2- объем, до которого доводится разбавленный раствор, см3;

M- масса продукта, г;

V1- объем, взятый для разбавления раствора, см3;

V3- объем разбавленного раствора, который используется для определения, см3.

Подскажите пожалуйста, что такое редуцирующие сахара и какие сахара к ним относятся? и получил лучший ответ

Ответ от Sveta Panchenko[гуру]
Понятие «редуцирующие сахара» обозначает группу Сахаров, которые в химической реакции оказывают восстанавливающее действие на соответствующие реагенты. Количественное соотношение глюкозы и фруктозы зависит от вида взятка, от количества выделенных пчелами энзимов и от продолжительности хранения. В меде, не подвергавшемся тепловой обработке, энзимы не утрачивают свою активность, и во время хранения образуются новые молекулы сахара. Продолжительное действие энзимов на сахарные составляющие меда приводит наряду с другими явлениями к «расслаиванию» меда. Кристаллизовавшаяся глюкоза выпадает в осадок, а над ней собирается жидкая фруктоза. В следующей таблице приведены обнаруженные в меде углеводы.
вся остальная инфо тут:
и тут:
ссылка
Редуцирующие сахара
Все моносахариды и некоторые дисахариды, в том числе мальтоза и лактоза, относятся к группе редуцирующих (восстанавливающих) .
Сахаров, т. е. соединений, способных вступать в реакцию восстановления. Сахароза представляет собой единственный нередуцирующий сахар среди распространенных Сахаров. Две обычные реакции на редуцирующие сахара - реакция Бенедикта и реакция Фелинга - основаны на способности этих Сахаров восстанавливать ион двухвалентной меди до одновалентной. В обеих реакциях используется щелочной раствор сульфата меди (II) (CuSO4), который восстанавливается до нерастворимого оксида меди (1) (Cu20).

Ответ от 2 ответа [гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: Подскажите пожалуйста, что такое редуцирующие сахара и какие сахара к ним относятся?

Ответ от НАТАЛИ [гуру]
Понятие «редуцирующие сахара» обозначает группу Сахаров, которые в химической реакции оказывают восстанавливающее действие на соответствующие реагенты. Фруктоза, глюкоза, сахароза.

Редуцирующий сахар

Все моносахариды, в случае с сиропом глюкоза и фруктоза, и некоторые дисахариды, в том числе мальтоза и лактоза, относятся к группе редуцирующих (восстанавливающих) сахаров, т. е. соединений, способных вступать в реакцию восстановления.

Две обычные реакции на редуцирующие сахара -- реакция Бенедикта и реакция Фелинга -- основаны на способности этих сахаров восстанавливать ион двухвалентной меди до одновалентной. В обеих реакциях используется щелочной раствор сульфата меди(II) (CuSO4), который восстанавливается до нерастворимого оксида меди(1) (Cu2O).

Реакция Фелинга наиболее часто используется для доказательства восстанавливающих свойств сахаров, она заключается в восстановлении моносахаридами гидроксида меди (II) в закись меди (I). При проведении реакции используется реактив Фелинга, представляющий собой смесь сульфата меди с сегнетовой солью (калий, натрий виннокислый) в щелочной среде. При смешивании сульфата меди со щелочью образуется гидроксид меди.

CuSO4 + 2NaOH -> Cu(OH)2v + Na2SO4

В присутствии сегнетовой соли выделившийся гидроксид не выпадает осадок, а образует растворимое комплексное соединение меди (II), которое восстанавливается в присутствии моносахаридов с образованием закисной меди (I). При этом альдегидная или кетон- группа моносахарида окисляется до карбоксильной группы. Например, реакция глюкозы с реактивом Фелинга.

СН2ОН - (СНОН) 4 - СОН + Сu(ОН) 2 ===> СН2ОН - (СНОН) 4 - СООН + Сu2Оv+ Н2О

Общие сведения.

Фруктоза, окисляясь, образует одноосновную арабоновую кислоту и формальдегид, которые при дальнейшем окислении дают соответственно триоксиглутаровую и муравьиную кислоты. При взаимодействии реактива Фелинга с редуцирующими сахарами (при нагревании) происходит разложение медного алкоголята сегнетовой соли:

Освобождающаяся окись меди быстро восстанавливается в закись

Выделяющийся при этой реакции кислород окисляет сахара. Следовательно, по количеству образовавшейся закиси меди можно рассчитать содержание редуцирующих сахаров в исследуемом материале.

Реактивы: а) реактив Фелинга (приготовление см. с. 202). 1 мл реактива должен соответствовать 0,05 г инвертного сахара (смеси равных количеств глюкозы и фруктозы). Методика установки титра реактива Фелинга описана ниже (см. с. 224); б) метиленовая синь (метиленовая голубая), 1%-ный раствор; в) натрий углекислый, 15%-ный раствор; г) уксуснокислый свинец раствор; д) фосфорнокислый натрий двузамещенный - , насыщенный раствор; е) соляная кислота, концентрированная едкий натр, раствор.

Приготовление вытяжки.

Из средней пробы продукта берут навеску, величина которой зависит от предполагаемого содержания сахаров в материале. При исследовании фруктов или ягод навеска составляет 15-50 г мезги (материала, измельченного на терке или мясорубке), варенья, повидла, джема - 7-8 г. Навеску количественно переносят в мерную колбу на 250 мл, смывая ее дистиллированной водой. Объем навески и воды в колбе не должен превышать 130-150 мл. Колбу встряхивают, затем определяют реакцию содержимого (с помощью нейтральной лакмусовой бумаги или универсального индикатора). При исследовании фруктов и ягод реакция вытяжки обычно бывает кислой, поэтому ее доводят до нейтральной (pH 7) осторожным добавлением 15%-ного раствора углекислого натрия (под контролем лакмуса или универсального индикатора), после чего колбу нагревают в течение 15-20 мин. на горячей водяной бане (80°С), часто встряхивая для перемешивания содержимого.

Примечание. При исследовании продуктов, содержащих крахмал (например, клубней картофеля, незрелых яблок и груш), водную вытяжку не нагревают на водяной бане, а сахара извлекают холодной водой в течение 1 ч, часто взбалтывая колбу.

Колбу охлаждают и к вытяжке добавляют 7-15 мл раствора уксуснокислого свинца, взбалтывают и ставят на 5-10 мин. (для осаждения белков, пигментов, дубильных веществ, также обладающих восстанавливающими свойствами). Появление прозрачного слоя жидкости над осадком свидетельствует о полноте осаждения. Если полнота

осаждения не была достигнута, в колбу добавляют (каплями) еще 1-5 мл раствора уксуснокислого свинца и взбалтывают. Для осаждения избытка уксуснокислого свинца в колбу приливают 18-20 мл насыщенного раствора двузамещенного фосфорнокислого натрия, взбалтывают и оставляют на 10-12 мин. для отстаивания. Проверяют полноту осаждения свинца, для чего по стенке колбы осторожно приливают 1-2 капли раствора фосфорнокислого натрия. Если в прозрачном слое жидкости над осадком уже не образуется мути, считают, что полнота осаждения достигнута. Колбу доливают до метки водой, взбалтывают и содержимое ее фильтруют через бумажный складчатый фильтр. В фильтрате (его называют «фильтрат А») определяют содержание редуцирующих сахаров. Надо так подобрать навеску продукта и разведение, чтобы концентрация сахаров в фильтрате А составляла .

Примечание. Быстрого осаждения белковых, красящих и дубильных веществ (так называемых органических несахаров) можно достигнуть обработкой вытяжки основным азотнокислым свинцом. К 100 мл вытяжки прибавляют 3-4 мл раствора едкого натра, взбалтывают и добавляют 4-6 мл раствора азотнокислого свинца. Осветление раствора происходит в течение 5-7 мин. Для освобождения от избытка свинца к вытяжке, нагретой до температуры 60° С, приливают 3-4 мл насыщенного раствора сернокислого натрия и нагревают на водяной бане при той же температуре 10 мин.

Определение редуцирующих сахаров (по Лэну и Эйнону).

В фильтрате А содержатся редуцирующие сахара (глюкоза, фруктоза и другие монозы, а также дисахариды, обладающие восстанавливающими свойствами, - мальтоза, лактоза и др.). Хотя сахароза тоже переходит в фильтрат, но для количественного определения ее необходимо подвергнуть гидролитическому расщеплению, инверсии (см. с. 222).

Метод определения редуцирующих сахаров основан на титровании реактива Фелинга сахарным раствором (фильтратом А) в присутствии метиленовой сини. Сахара, оставшиеся в небольшом избытке после восстановления окиси меди в закись, реагируют с метиленовой синью, восстанавливая ее в лейкосоединение.

В бюретку емкостью 50 мл (со стеклянным краном) наливают фильтрат А. В коническую колбу специальными

пипетками вносят по 5 мл растворов Фелинга I и II и вливают из бюретки 15-20 мл фильтрата А. Колбу ставят на электрическую плитку и нагревают (на асбестовой сетке) так, чтобы довести до кипения за 2 мин., после чего прибавляют 4-5 капель раствора метиленовой сини и кипятят точно 2 мин.

Примечание. Могут наблюдаться случаи, когда от прибавления метиленовой сини раствор в колбе не посинеет. Это свидетельствует о высокой концентрации редуцирующих сахаров в фильтрате А, и тогда надо его разбавить в два-три раза. Содержание сахаров в испытуемом растворе должно составлять примерно

Продолжая кипячение жидкости, ее титруют из бюретки фильтратом А до исчезновения синего окрашивания и появления оранжевого осадка закиси меди.

Титровать надо быстро, чтобы в сумме жидкость кипела не более 3 мин. На дотитровывание следует расходовать не более 2-3 мл испытуемого раствора. Если при этом расходуется более 3 мл фильтрата А, рекомендуется повторить определение, прибавив в колбу не 15, а 20 мл испытуемого раствора.

Первое титрование является ориентировочным. Приблизительно установив, сколько миллилитров фильтрата А расходуется на титрование 10 мл реактива Фелинга, проводят два-три точных определения.

где Т - титр реактива Фелинга (по инвертному сахару); н - навеска растительного материала в объеме испытуемого раствора, израсходованном на титрование 10 мл реактива Фелинга (суммируют количество миллилитров фильтрата А, прибавленных в колбу в самом начале определения и затем затраченных на дотитровывание)

Определение сахарозы.

Для определения содержания сахарозы в отдельной порции фильтрата А производят ее гидролитическое расщепление (инверсию). Условия инверсии подобраны так, что гидролизуется только одна сахароза.

В мерную колбу на 100 мл вносят 50 мл фильтрата А (см. с. 221), добавляют 5 мл концентрированной соляной кислоты и нагревают, часто взбалтывая, в течение 8 мин. на водяной бане, следя за тем, чтобы жидкость в колбе имела температуру 68-70° С (шарик термометра опущен в колбу). Затем колбу быстро охлаждают (под краном) до 20° С. Охлажденную жидкость нейтрализуют углекислым натрием или раствором едкого натра, контролируя этот процесс лакмусовой бумажкой, опущенной в колбу. Нейтрализованную жидкость доводят водой до метки и в случае необходимости фильтруют. Получают фильтрат Б, в котором содержится так называемый инвертный сахар - смесь равных частей глюкозы и фруктозы, освободившихся в результате гидролитического расщепления сахарозы. Содержание редуцирующих сахаров в фильтрате определяют по методу, описанному выше.

где - содержание соответственно редуцирующих сахаров и сахарозы.

Определение титра реактива Фелинга.

Титр реактива Фелинга определяют по химически чистой сахарозе.

Примечание. Для установки титра реактива можно также пользоваться сахаром-рафинадом, который предварительно выдерживают в эксикаторе (над хлористым кальцием) в течение 4-б суток.

На аналитических весах (с точностью до 0,0001 г) отвешивают 0,55 г сахарозы. Навеску переносят в мерную колбу на 250 мл и растворяют в 75 мл теплой воды.

К раствору прибавляют 4 мл концентрированной соляной кислоты и производят инверсию сахарозы. Все последующие операции описаны выше (см. «Определение сахарозы»). Определяют содержание редуцирующих сахаров в растворе.

Пример расчета. Навеска сахарозы - 0,55 г. Объем растворта инвертного сахара - 250 мл. На титрование 10 мл реактива Фелинга израсходовано 21,2 мл испытуемого раствора.

Титр реактива Фелинга (по инвертному сахару) рассчитывают по формуле

где н - навеска сахарозы, г, В - объем раствора инвертного сахара, израсходованный на титрование 10 мл реактива Фелинга (в нашем примере - 21,2 мл); а - объем раствора инвертного сахара в мерной колбе ( - коэффициент перевода сахарозы в инвертный сахар;


. Крахмал разделяют на фракции путем растворения в воде. Обе фракции нерастворимы в холодной воде, а в горячей образуют растворы- клейстеры(клеящее свойство).(Kleister - нем. -клей, приготовленный из крахмала или муки). Через некоторое время при хранении из раствора выпадает осадок амилозы (процесс ретроградации ). Процесс ускоряется добавлением солей (сульфата магния, сульфата натрия) и бутанола. Амилопектин образует более устойчивый клейстер вследствие гидратации разветвленных макромолекул и увеличения их объема и возникновении сетчатой структуры. Амилоза выделяется из раствора при 70 0 С, амилопектин при 20 0 С. Крахмал гидролизуется в присутствии кислоты при нагревании: макромолекулярные продукты промежуточного гидролиза носят название декстрины. В живых организмах гидролиз осуществляет фермент амилаза , которая может гидролизовать только 1,4- а -гликозидные связи. У человека амилаза содержится в слюне, выделяется подчелюстной слюнной железой, и в соке панкреатической железы. Последовательность превращений в процессе гидролиза: (С6 Н10О 5) n --> декстрины --> n/2 С12 Н10О 11--> n С6 Н10О 5 Крахмал мальтоза а-D- глюкопираноза В процессе гидролиза исчезает цветная окраска с йодом, но постепенно появляется положительная качественная реакция с реактивом Фелинга на редуцирующие сахара (мальтоза и глюкоза) Амилаза относится к пищеварительным ферментам, но одновременно к факторам, вызывающим неблагоприятные изменения в полости рта: микрофлора полости рта также содержит ферменты гидролиза крахмала и мальтозы, появление глюкозы в слюне способствует размножению микрофлоры, участвующей в возникновении кариеса. Крахмал – основной пищевой источник глюкозы. Содержатся в крупах, хлебе и других мучных изделиях.. Его медленный гидролиз в кишечнике сопровождается постепенным поступлением глюкозы в кровь, уровень глюкозы в крови повышается достаточно умеренно в течение 1,5- 2 часов,. что не вызывает резкого выделения инсулина. Крахмал поэтому относится к трудноусвояемым углеводам, употребление которых в пищу считается более физиологичным по сравнению с употреблением сахарозы. Но в тоже время продукты с высоким содержанием крахмала противопоказаны при диабете. Крахмал используют в пищевой, текстильной, бумажной, меховой промышленности, в производстве красок. В фармацевтической промышленности применяют в качестве добавок к порошкам, присыпок, обволакивающих средств. Применяют модифицированные крахмалы и декстрины. Важное промышленное и научное значение приобрели циклодекстрины( формально они относятся к олигосахаридам).. Циклодекстрины используют в парфюмерной, косметологической, фармацевтической промышленности в качестве агентов для медленного выделения и доставки веществ, они важны как имитаторы ферментов. Циклодекстрин содержит от шести до восьми звеньев а-D- глюкопираноных единиц, соединенных в цикл. Вся молекула циклодекстрина выглядит как бумажный стаканчик, у которого верхняя часть шире дна. Широкая поверхность гидрофильна, на ней расположены группы –СНОН пиранозных циклов. Во внутреннее пространство « стакана» проникают вещества, циклодекстрин - уникальный комплексообразователь . Он обеспечивает транспорт лекарственных препаратов, может включать в свое внутреннее пространство « стаканчика» различные лекарства, которые или плохо всасываются в кишечнике, или разлагаются пищеварительными ферментами, или обладают неприятным вкусом и раздражающим действием на ткани желудочно-кишечного тракта. Гликоген (С6 Н10О 5) n Гликоген- запасной полисахарид животных тканей, обнаружен в грибах. Он содержится в клетках любых тканей организма: печени, почек, мышц, костей и других. Содержание в печени может достигать 5% (от сухой массы ткани). Строение и состав гликогена аналогичны амилопектину- основная цепь образована гликозидными связями(а- 1,4), а в местах ветвления- гликозидные связи(а – 1,6). Образует в цитозоле клетки гранулы размером 10- 40 нм. Молекулярная масса соответствует общему количеству остатков глюкозы около 50 000. С йодом образует коричнево- бурые растворы. Определение интенсивности окраски оптическими регистрирующими приборами используют для количественного определения гликогена в тканях. Следует отметить некоторые особенности в строении гликогена: - точки ветвления расположены часто, примерно у каждого десятого атома углерода в основной цепи - в боковых цепях содержится примерно до 16-18 моносахаридных остатков - количество ветвлений значительно больше по сравнению с амилопектином. Распад гликогена в тканях печени, почек, мышц осуществляется особым ферментом фосфорилазой гликогена, а в костной ткани и одонтобластах – амилазой. Рисунок условно изображает строение и порядок соединения ветвей гликогена. Целлюлоза (С6 Н10О 5) n Природный полисахарид растительного происхождения, который содержит мономерные звенья β – D-глюкопиранозы, которые связаны между собой β-1,4- гликозидной связью. Целлюлоза- главная составная часть клеточных стенок высших растений, где она связана со многими другими полисахаридами. Примером чистой целлюлозы может служить хлопковая вата, тополиный пух, зонтики семян, например, одуванчика также образованы целлюлозой. Для целлюлозы характерна полидисперсность по молекулярной массе, которая может быть выше 10 6 . Целлюлоза относится к кристаллическим полимерам и имеет сложную надмолекулярную структуру. Длинные линейные цепи располагаются параллельно друг другу, гидроксильные группы пиранозных циклов образуют межмолекулярные водородные связи, получаются волокна с плотной упаковкой «нитей» целлюлозы. β-1,4- Гликозидная связь располагает пиранозные циклы двух параллельных цепей так, что атомы кислорода циклов располагаются не друг над другом, а в противоположных углах цикла.. Поэтому в нативном виде целлюлоза воде не растворима и плохо смачивается водой, медленно гидролизуется в кислой среде. В аммиачной среде под влиянием реактива Швейцера [ Сu(NH3)4] (OH)2 разрушаются все внутримолекулярные связи и гидролиз проходит достаточно легко. Целлюлоза имеет большое промышленное значение для производства искусственного волокна ацетилцеллюлозы(вискозные волокна) нитроэфиры применяют в производстве взрывчатых средств, сложные эфиры - карбоксиметилцеллюлоза, оксиэтилцеллюлоза - используются при изготовлении косметических, парфюмерных средств, простой эфир метилцеллюлоза в пищевой промышленности(например, в производстве мороженого как эмульгатор и низкокалорийная добавка). целлюлоза Целлюлоза и ее производные не перевариваются в организме человека и животных собственными ферментами: фермент целлюлаза вырабатывается микрофолорой нижнего отдела кишечника человека и желудка у жвачных животных.. Продукты частичного гидролиза целлюлозы называются гидроцеллюлозой, конечным продуктом является глюкоза. В медицинских целях целлюлозу используют как низкокалорийную добавку к пище и хороший адсорбент. Обработанная целлюлоза набухает в желудке и кишечнике. создает давление на стенки желудочно-кишечного тракта, формируется чувство насыщения. Целлюлоза адсорбирует пищевой холестерин, пуриновые соединения(кофеин, мочевую кислоту и другие), уменьшает их всасывание из пищевых продуктов. Высокое содержание целлюлозы в составе отрубей, которые используют как добавки для лечебного и диетического низкокалорийного питания. Декстран (С6 Н10О 5) n Природный декстран – разветвленное высокомолекулярное соединение, молекулярная масса которого достигает нескольких десятком миллионов. В молекулах декстранов глюкозные остатки связаны в основную цепь а- 1,6- гликозидными связями, а в местах ветвления- связями в положениях а -1,4, а- 1,3 и а- 1,2. Синтезируется из сахарозы с помощью некоторых микроорганизмов или ферментов, выделенных из этих микроорганизмов. Декстраны, синтезируемые разными видами штаммами микроорганизмов, отличаются по строению и свойствам.
Для любых предложений по сайту: [email protected]